Fit a Temperature Response Curve (TRC) by an index to get a parameter file
Source:R/TRC_PARMS_04.R
TRC_PARMS_04.RdThis function uses the equation: $$\text{NEE} \sim R_{\text{ref}} \cdot Q_{10} \cdot \exp \left( \frac{T - T_{\text{ref}}}{10} \right)$$
The equation requires air temperature (TA) in degrees Celsius, photosynthetically active radiation (PAR) in \(\mu\)mol m-2 s-1, and net ecosystem exchange (NEE) in \(\mu\)mol m-2 s-1.
Arguments
- data.frame
(dataframe) A dataframe that contains net ecosystem exchange (NEE), an index, air temperature (TA), and photosynthetically active radiation (PAR).
- iterations
(numeric) The number of iterations to run
brms::brm().- priors.trc
(brmsprior dataframe) The priors for
brms::brm()to use. Default priors are as follows:- idx.colname
(character) The name of the column containing the index.
- NEE.colname
(character) The name of the column containing NEE.
- TA.colname
(character) The name of the column containing air temperature.
- PAR.colname
(character) The name of the column containing PAR.
Details
Model parameters are fit using the R package brms.
Rhat (Potential Scale Reduction Factor): Indicates how well the different Markov chains in your analysis have converged to the same posterior distribution. Ideally, Rhat should be close to 1 for all parameters. A high Rhat value suggests potential convergence issues and the need to run the chains longer.
Bulk ESS (Effective Sample Size - Bulk): Estimates the effective number of independent samples from the central part of the posterior distribution.
Tail ESS (Effective Sample Size - Tail): Estimates the effective number of independent samples from the tails of the posterior distribution. Important for assessing the reliability of quantile estimates (e.g., 95% confidence intervals).
Key points to remember: Aim for Rhat close to 1 and high values for both Bulk ESS and Tail ESS.
Examples
if (FALSE) { # !is.null(cmdstanr::cmdstan_version(error_on_NA = FALSE))
# Import flux tower data
tower.data <- read.csv(system.file("extdata", "AMF_US-Skr_BASE_HH_2-5_Formatted.csv",
package = "CarbonExchangeParameters"))
# Fit curve parameters for each YearMon:
Example_TRC_PARMS_04 <- TRC_PARMS_04(data.frame = tower.data,
iterations = 5000,
priors.trc = brms::prior("normal(2.0, 0.3)",
nlpar = "Q10", lb = 1.0, ub = 3.5) +
brms::prior("normal(0.5, 0.3)",
nlpar = "Rref", lb = 0.01, ub = 1),
idx.colname = 'YearMon',
NEE.colname = 'NEE_PI',
PAR.colname = 'SW_IN',
TA.colname = 'TA_1_1_1')
}