Fit a Light Response Curve (LRC) by an index to get a parameter file
Source:R/LRC_PARMS_05.R
LRC_PARMS_05.RdThis function uses the equation: $$\text{NEE} \sim -a_1 \cdot \exp(-B \cdot \text{PAR}) - Y \cdot \exp(Z \cdot \text{PAR})$$
Where B and Y are correction factors in which B is the photoinhibitation item, Y is the light saturation item in which Y = a/Pmax, and Z is a correction factor not well defined within the paper.
The equation requires photosynthetically active radiation, PAR, in \(\mu\)mol m-2 s-1 and net ecosystem exchange, NEE, in \(\mu\)mol m-2 s-1.
Usage
LRC_PARMS_05(
data.frame = NULL,
iterations = NULL,
priors.lrc = brms::prior("normal(-0.12, 0.1)", nlpar = "a", lb = -0.2, ub = 0) +
brms::prior("normal(0, 1)", nlpar = "B", lb = -1, ub = 1) +
brms::prior("normal(0.2, 0.1)", nlpar = "Y", lb = 0, ub = 0.3) +
brms::prior("normal(0.0, 0.1)", nlpar = "Z", lb = -0.1, ub = 0.2),
idx.colname = NULL,
NEE.colname = NULL,
PAR.colname = NULL
)Arguments
- data.frame
(dataframe) A dataframe that contains net ecosystem exchange (NEE), an index, and photosynthetically active radiation (PAR).
- iterations
(numeric) The number of iterations to run
brms::brm().- priors.lrc
(brmsprior dataframe) The priors for
brms::brm()to use. Default priors are as follows:- idx.colname
(character) The name of the column containing the index.
- NEE.colname
(character) The name of the column containing NEE.
- PAR.colname
(character) The name of the column containing PAR.
Details
Model parameters are fit using the R package brms.
Rhat (Potential Scale Reduction Factor): Indicates how well the different Markov chains in your analysis have converged to the same posterior distribution. Ideally, Rhat should be close to 1 for all parameters. A high Rhat value suggests potential convergence issues and the need to run the chains longer.
Bulk ESS (Effective Sample Size - Bulk): Estimates the effective number of independent samples from the central part of the posterior distribution.
Tail ESS (Effective Sample Size - Tail): Estimates the effective number of independent samples from the tails of the posterior distribution. Important for assessing the reliability of quantile estimates (e.g., 95% confidence intervals).
Key points to remember: Aim for Rhat close to 1 and high values for both Bulk ESS and Tail ESS.
Examples
if (FALSE) { # !is.null(cmdstanr::cmdstan_version(error_on_NA = FALSE))
# Import flux tower data
tower.data <- read.csv(system.file("extdata", "AMF_US-Skr_BASE_HH_2-5_Formatted.csv",
package = "CarbonExchangeParameters"))
# Fit curve parameters for each YearMon:
Example_LRC_PARMS_05 <- LRC_PARMS_05(data.frame = tower.data,
iterations = 1000,
priors.lrc = brms::prior("normal(-0.12, 0.1)",
nlpar = "a", lb = -0.2, ub = 0) +
brms::prior("normal(0, 1)",
nlpar = "B", lb = -1, ub = 1) +
brms::prior("normal(0.2, 0.1)",
nlpar = "Y", lb = 0, ub = 0.3) +
brms::prior("normal(0.0, 0.1)",
nlpar = "Z", lb = -0.1, ub = 0.2),
idx.colname = 'YearMon',
NEE.colname = 'NEE_PI',
PAR.colname = 'SW_IN')
}