Fit a Light Response Curve (LRC) by an index to get a parameter file
Source:R/LRC_PARMS_01.R
LRC_PARMS_01.RdThis function uses the equation: $$\text{NEE} \sim \frac{a_1 \cdot \text{PAR} \cdot a_x}{a_1 \cdot \text{PAR} + a_x} - r$$
Where \(r\) is ecosystem respiration (\(\mu\)mol CO2 m-2 s-1), \(a_1\) is the apparent quantum efficiency of CO2 uptake (CO2), and \(a_x\) is the maximum CO2 uptake rate on the ecosystem scale.
The equation requires photosynthetically active radiation, PAR, in \(\mu\)mol m-2 s-1 and net ecosystem exchange, NEE, in \(\mu\)mol m-2 s-1.
Usage
LRC_PARMS_01(
data.frame = NULL,
iterations = NULL,
priors.lrc = brms::prior("normal(-0.01, 0.1)", nlpar = "a1", lb = -0.2, ub = 0) +
brms::prior("normal(-7.65, 0.33)", nlpar = "ax", lb = -30, ub = -0.01) +
brms::prior("normal(2.10, 0.11)", nlpar = "r", lb = 1.9, ub = 2.2),
idx.colname = NULL,
NEE.colname = NULL,
PAR.colname = NULL
)Arguments
- data.frame
(dataframe) A dataframe that contains net ecosystem exchange (NEE), an index, and photosynthetically active radiation (PAR).
- iterations
(numeric) The number of iterations to run
brms::brm().- priors.lrc
(brmsprior dataframe) The priors for
brms::brm()to use. Default priors are as follows:- idx.colname
(character) The name of the column containing the index.
- NEE.colname
(character) The name of the column containing NEE.
- PAR.colname
(character) The name of the column containing PAR.
Details
Model parameters are fit using the R package brms.
Rhat (Potential Scale Reduction Factor): Indicates how well the different Markov chains in your analysis have converged to the same posterior distribution. Ideally, Rhat should be close to 1 for all parameters. A high Rhat value suggests potential convergence issues and the need to run the chains longer.
Bulk ESS (Effective Sample Size - Bulk): Estimates the effective number of independent samples from the central part of the posterior distribution.
Tail ESS (Effective Sample Size - Tail): Estimates the effective number of independent samples from the tails of the posterior distribution. Important for assessing the reliability of quantile estimates (e.g., 95% confidence intervals).
Key points to remember: Aim for Rhat close to 1 and high values for both Bulk ESS and Tail ESS.
Examples
if (FALSE) { # !is.null(cmdstanr::cmdstan_version(error_on_NA = FALSE))
# Import flux tower data
tower.data <- read.csv(system.file("extdata", "AMF_US-Skr_BASE_HH_2-5_Formatted.csv",
package = "CarbonExchangeParameters"))
# Fit curve parameters for each YearMon:
Example_LRC_PARMS_01 <- LRC_PARMS_01(data.frame = tower.data,
iterations = 1000,
priors.lrc = brms::prior("normal(-0.01, 0.1)",
nlpar = "a1", lb = -0.2, ub = 0) +
brms::prior("normal(-7.65, 0.33)",
nlpar = "ax", lb = -30, ub = -0.01) +
brms::prior("normal(2.10, 0.11)",
nlpar = "r", lb = 1.9, ub = 2.2),
idx.colname = 'YearMon',
NEE.colname = 'NEE_PI',
PAR.colname = 'SW_IN')
}